
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 269 (2004) 669–687

Limit cycle oscillation of missile control fin with structural
non-linearity

J.S. Bae, I. Lee*

Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1

Gusong-dong, Yusong-gu, Daejon 305-701, South Korea

Received 2 July 2002; accepted 20 January 2003

Abstract

Non-linear aeroelastic characteristics of a deployable missile control fin with structural non-linearity are
investigated. A deployable missile control fin is modelled as a two-dimensional typical section model.
Doublet-point method is used for the calculation of supersonic unsteady aerodynamic forces, and
aerodynamic forces are approximated by using the minimum-state approximation. For non-linear flutter
analysis structural non-linearity is represented by an asymmetric bilinear spring and is linearized by using
the describing function method. The linear and non-linear flutter analyses indicate that the flutter
characteristics are significantly dependent on the frequency ratio. From the non-linear flutter analysis,
various types of limit cycle oscillations are observed in a wide range of air speeds below or above the linear
divergent flutter boundary. The non-linear flutter characteristics and the non-linear aeroelastic responses
are investigated.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Aeroelastic phenomena such as flutter are dynamic instabilities which involve inertia,
aerodynamic, and elastic forces of flight vehicles. If an aeroelastic problem occurs in flight,
flight vehicle structures may fail. Therefore, it is important to predict aeroelastic characteristics
accurately to prevent aeroelastic instabilities.
Under the assumption of structural linearity, aeroelastic analyses of flight vehicles can be easily

performed. However, the aeroelastic results under this assumption may not agree well with the
physical phenomena because most real structures may have structural non-linearities such as
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freeplay, bilinear non-linearity, friction, and hysteresis. Non-linear aeroelastic characteristics are
quite different from linear characteristics. Non-linear aeroelastic responses typically include
flutter, divergence, limit cycle oscillation (LCO) and chaotic motion.
LCO is a periodic oscillation consisting of a limited number of periods, and chaotic motion is a

non-periodic oscillation. When a linear system becomes unstable, the amplitude of the response
increases exponentially, whereas a non-linear system has a bounded motion such as LCO or
chaotic motion, which may occur below the linear flutter speed. LCO and chaotic motion do not
cause the abrupt failure of a structure. However, these motions can cause a structure to be
damaged by fatigue and can considerably affect the control systems of flight vehicles. Thus, the
effects of structural non-linearities on the aeroelastic characteristics of flight vehicles should be
considered in the design stage.
Several investigators have performed non-linear aeroelastic analyses of flight vehicles with

structural non-linearities. Woolston et al. [1] analyzed a non-linear aeroelastic system with
freeplay, hysteresis, and cubic non-linearity and showed that LCO may occur below the linear
flutter boundary. Laurenson and Trn [2] studied flutter of a missile control surface with freeplay
using the describing function method. Lee [3] developed an iterative scheme for multiple non-
linearities using the describing function method and the structural dynamics modification method.
Lee and Tron [4] studied the non-linear aeroelastic characteristics of a CF-18 aircraft with
freeplay and bilinear non-linearities in the leading-edge flap hinge and the wing-fold hinge using
the describing function method. Yang and Zhao [5] studied the LCO of a typical section model
with pitch non-linearity subject to incompressible flow using the Theodorsen function. Lee and
Kim [6] studied the LCO and chaotic motion of a missile control surface with freeplay using time-
domain analysis. Conner et al. [7] and Tang et al. [8] studied the non-linear aeroelastic
characteristics of a typical section with control surface freeplay both numerically and
experimentally. Virgin et al. [9] studied the chaotic motion of a typical section and Tang et al.
[10] studied the non-linear responses of an airfoil excited by a gust load. Recently, Sheta et al. [11]
conducted computational and experimental investigations of a non-linear aeroelastic system with
a fifth order polynomial spring.
The purpose of the present study is to investigate the non-linear aeroelastic characteristics of a

deployable missile control fin with structural non-linearity. For the simplicity of analysis, the fin is
modelled as a two-dimensional typical section. Doublet-point method (DPM) [12] is used for the
computation of supersonic unsteady aerodynamic forces, and the method of Karpel [13] is used to
approximate the frequency-domain aerodynamic forces. Structural non-linearity is represented by
an asymmetric bilinear plunge spring and is linearized using the describing function method. Root-
locus method and time-integration method [14] are used for the linear and non-linear aeroelastic
analyses. LCO characteristics and the effects of asymmetric bilinear spring are investigated.

2. Theoretical analysis

2.1. Two-dimensional typical section model

Most tube-launched projectiles have deployable missile control fins like those shown in Fig. 1.
These fins can be folded against the projectile body and allow more efficient use of space. Except
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for the flexible modes of the fin, the cross-section AA0 has plunge and pitch rigid-body motions
and is represented by the two-dimensional typical section model shown in Fig. 2. The two-
dimensional model in Fig. 2 gives us a simple and easy method of aeroelastic analysis and
provides easier understanding of physical meanings about aeroelastic characteristics. The present
study considers the structural non-linearity in only a plunge spring.

2.2. Aeroelastic equation

The aeroelastic equations of the two-dimensional typical section model shown in Fig. 2 can be
written as

m Sa

Sa Ia

" #
.h

.a

( )
þ

Ch 0

0 Ca

" #
’h

’a

( )
þ

Kh hð Þ 0

0 Ka

" #
h

a

( )
¼

�L

M

( )
; ð1Þ

where L and M are the aerodynamic lift and moment, respectively.
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If the motion is harmonic, the aerodynamic forces can be written as

�L

M

( )
¼ q

Qhh Qha

Qah Qaa

" #
h

a

( )
¼ q½Q�fxg; ð2Þ

where q ¼ 1
2
rU2

� �
; ½Q�; and fxg are dynamic pressure, the aerodynamic influence coefficient

(AIC) matrix, and the displacement vector, respectively.
The aeroelastic equations in Eq. (1) can be rewritten as

½M�f .xg þ ½C�f ’xg þ ½K �fxg ¼ q½Q�fxg þ ff g; ð3Þ

where

½M� ¼
m Sa

Sa Ia

" #
; ½C� ¼

Ch 0

0 Ca

" #
: ð4Þ

Stiffness matrix and the non-linear term in Eq. (3) are written as

½K � ¼
Kh 0

0 Ka

" #
; ff g ¼

0

0

( )
ð5Þ

for a linear system, and

½K � ¼
0 0

0 Ka

" #
; ff g ¼

�KhðhÞh

0

( )
ð6Þ

for a non-linear system.

2.3. State-space equation

To integrate the aeroelastic equations in Eq. (3), Eq. (3) may be transformed into state-space
equations. In the present study, the AIC are calculated for several reduced frequencies k by
supersonic DPM code [14]. Thus, the aerodynamic coefficients should be approximated by a
rational function. There are many methods for rational function approximation (RFA), and
Karpel’s minimum-state approximation (MSA) [13] is used here. The approximation form of
Karpel’s method is as follows:

½QðsÞ� ¼ ½P1�
b

U

� �2
s2 þ ½P2�

b

U

� �
s þ ½P3� þ ½D�ðs½I � � ½ %R�Þ�1½E�s; ð7Þ

where ½Pi�; ½D�; and ½E� are calculated from a least-squares fit and ½R� is a diagonal matrix. The
diagonal terms of ½R� are the aerodynamic poles and constants to be determined for best fit of ½Q�:
Using Laplace transformation and MSA, Eq. (3) can be written as

ð½ %M�s2 þ ½ %C�s þ ½ %K�ÞfX ðsÞg ¼ ½ %D�fXaðsÞg þ fF ðsÞg; ð8Þ

where

½ %M� ¼ ½M� � 1
2
rb2½P1�; ð9aÞ

½ %C� ¼ ½C� � 1
2
rUb½P2�; ð9bÞ
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½ %K� ¼ ½K� � 1
2
rU2½P3�; ð9cÞ

½ %D� ¼ 1
2
rU2½D�: ð9dÞ

In Eq. (8), the state vector XaðsÞ by the aerodynamic approximation is obtained as

fXaðsÞg ¼ ðs½I � � ½ %R�Þ�1½E�sfX ðsÞg: ð10Þ

Defining the new state v as ’x; the final state-space aeroelastic equations are obtained as
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2.4. Method of aeroelastic analysis

The aeroelastic analysis is subdivided into a frequency-domain analysis and a time-domain
analysis [15]. Frequency- and time-domain methods have differences in their approaches, but
these methods give similar results for a linear aeroelastic problem.
The frequency-domain analysis has the advantages of relatively less computation time,

simplicity of the analysis procedure, and ease of physical interpretation. However, this method
cannot be directly applied to an aeroelastic problem with structural non-linearities. To overcome
this disadvantage, these non-linearities should be linearized by a linearization method such as a
describing function method. The advantage of time-domain analysis is that this method can be
applied to both linear and non-linear problems, but the disadvantages are relatively more
computation time, complexity of analysis procedure, and difficulty of physical interpretation.
Therefore, an aeroelastic analysis with structural non-linearities should be performed by using
both methods for an effective and accurate analysis [15].
In the present study, root-locus method and time integration method are used for non-linear

aeroelastic analysis. The root-locus method involves tracing the root-loci of Eq. (11). As the air
speed U is increased, a real part eigenvalue of Eq. (11) is changed from negative to positive. This
point is the flutter point. To integrate Eq. (11), the adaptive Runge–Kutta method [16] with step
doubling and adaptive step-size control schemes is used here.

2.5. Asymmetric bilinear spring

Bae [14] established a non-linear hinge model of a deployable missile control fin from dynamic
tests. In the present study, a plunge spring is represented by the asymmetric bilinear spring shown
in Fig. 3. Relations between non-linear restoring force and displacement can be written as

f ðxÞ ¼

K1x for xos1;

ðK1 � K2Þs1 þ K2x for s1oxos2;

ðK1 � K2Þs1 þ ðK2 � K3Þs2 þ K3x for s2ox;

8><
>: ð12Þ
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where

K2 ¼ a1K1; K3 ¼ a2K1: ð13Þ

For frequency-domain analysis, the equivalent stiffness of a non-linear spring in Eq. (12) should
be obtained. The general describing function method [2] can give the method of an equivalent
linear system but it cannot be used here. To account for general cases like the asymmetric bilinear
spring shown in Fig. 3, a dual-input describing function technique [17] should be used.
Considering a DC offset, an input x is assumed as

x ¼ B þ A sinot: ð14Þ

Using the dual-input describing function and considering only the fundamental components, the
restoring force is given as

f ðtÞ ¼ %a0 þ %a1 cosot þ %b1 sinot; ð15Þ

where

%a0 ¼
1

2p

Z p

�p
f dðotÞ; ð16aÞ

%a1 ¼
1

p

Z p

�p
f cosðotÞ dðotÞ; ð16bÞ

%b1 ¼
1

p

Z p

�p
f sinðotÞ dðotÞ: ð16cÞ

Substituting Eq. (12) into Eqs. (15) and (16), coefficients %a0; %a1 and %b1 can be obtained and
simplified as follows:

(a) A1ð¼ A þ BÞps1;

f ðtÞ ¼ K1ðA sinot þ BÞ;
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%a0 ¼ K1B;

%b1 ¼ K1A;

(b)
s1oA1os2; g1 ¼ sin�1

s1 � B

A

� �
;

f ðtÞ ¼
K1ðA sinot þ BÞ; �ppotpg1; p� g1potpp;

K2ðA sinot þ BÞ þ ðK1 � K2Þs1; g1ootop� g1;

(

%a0 ¼ K1B þ
A

p
ðK1 � K2Þ

p� 2g1
2

sin g1 � cos g1

� �
;

%b1 ¼
K1 þ K2

2
A þ

A

2p
ðK1 � K2Þ ð2g1 þ sin2g1Þ;

(c)
s2pA1; g1 ¼ sin�1

s1 � B

A

� �
; g2 ¼ sin�1

s2 � B

A

� �
g2 ¼ sin�1

s2 � B

A

� �
;

f ðtÞ ¼

K1ðA sinot þ BÞ; �ppotpg1;

p� g1ootpp;

K2ðA sinot þ BÞ þ ðK1 � K2Þs1; g1ootrg2;

p� g2potpp� g1;

K3ðA sinot þ BÞ þ ðK2 � K3Þs2 þ ðK1 � K2Þs1; g2ootpp� g2;

8>>>>>><
>>>>>>:

%a0 ¼K1B þ
A

p
ðK1 � K2Þ

p� 2g1
2

sin g1 � cos g1

� ��

þ ðK2 � K3Þ
p� 2g2
2

sin g2 � cos g2

� ��
;

%b1 ¼
K1 þ K2

2
A þ

A

2p
½ðK1 � K2Þð2g1 þ sin2g1Þ

þ ðK2 � K3Þð2g2 þ sin2g2Þ�;

where %a1 is zero for all cases. Because the describing functions depend on the amplitudes A and B

of oscillation, an iterative approach is required [18].
Fig. 4 shows the variations of equivalent stiffness and amplitude B: Freeplay d and amplitude

A1 are defined as

d ¼ ðs2 � s1Þ=2; ð130Þ

A1 ¼ A þ B; ð140Þ

where the freeplay d is designated as 0.1mm. As the amplitude A1 increases, the equivalent
stiffness decreases within freeplay and increases outside of this value. Thus, an asymmetric
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bilinear spring has the characteristics of both softening and hardening springs for different
amplitudes.

3. Numerical example and discussion

As a numerical example, the aeroelastic system parameters in Table 1 are used for linear and
non-linear aeroelastic analyses. Mach number and air density used in the analyses are 2.0 and
1:25� 10�13 kgf s2=mm4; respectively. AIC matrix ½Q� in Eq. (2) is obtained by supersonic DPM.
Generally, DPM gives the three-dimensional aerodynamic forces but the AIC of a typical section
model can be obtained by considering a rectangular wing with a high aspect ratio.

3.1. Linear aeroelastic characteristics

Figs. 5 and 6 show the effects of plunge stiffness variations on the linear flutter characteristics
for the frequency ratio of 0.765 and 1.3, respectively. The frequency ratio means the ratio of oh to
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Table 1

System parameters of two-dimensional typical section model

Parameter Values

b 52.5mm

Sa 1.72� 10�4 kgf s2

Ia 1.08� 10�2 kgf s2/mm
m 2.04� 10�5 kgf s2/mm
oh 130Hz

e ð¼ bð1þ aÞÞ 44.1mm
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oa: When the frequency ratio is 0.765, the flutter speed increases as the stiffness ratio decreases.
The typical flutter of two-dimensional model is the plunge–pitch mode coalescence flutter. The
decrease of plunge stiffness makes the plunge mode far from the pitch mode such that the flutter
speed increases. When the frequency ratio is 1.3, the flutter speed decreases and then increases as
the stiffness ratio decreases. This is caused by the exchange between plunge mode and pitch mode.
As the stiffness ratio decreases, plunge mode coalesces with pitch mode, and then goes far from
this mode. Thus, the linear aeroelastic characteristics of the two-dimensional model are
significantly dependent on the frequency ratio. However, the flutter frequency is independent of
the frequency ratio and decreases as the stiffness ratio decreases.
As shown in Fig. 3, the equivalent stiffness of an asymmetric bilinear spring decreases due to

the structural non-linearity. Similar to the linear case, the non-linear aeroelastic characteristics are
expected to be considerably dependent on the frequency ratio, as is discussed in the following
section.

3.2. Non-linear aeroelastic characteristics

Fig. 7 shows the LCO flutter characteristics of the two-dimensional model with an asymmetric
bilinear plunge spring when the frequency ratio is 0.765. As shown in Fig. 7, the results of
frequency-domain analyses using describing function and time-domain analysis agree well with
each other. For the frequency ratio of 0.765, LCOs are observed above the linear flutter speed
because the flutter speed increases due to the decrease of the equivalent stiffness as shown in Fig.
5. The LCOs in Fig. 7 are of two different types. One is a stable LCO ‘A’ with a small amplitude
and the other is an unstable LCO ‘B’ with a large amplitude. The two different types of LCOs are
dependent on an initial condition, and unstable LCO is observed at the boundary between stable
LCO and divergent flutter. Fig. 8 shows the aeroelastic responses with the two different LCOs
when the speed ratio ðU� ¼ U=Uref Þ is 1.4. A large-amplitude LCO disappears and then a small-
amplitude LCO remains. An unstable LCO transiently occurs when the initial amplitude ratio
ðh�
0 ¼ h0=dÞ is about 2.66. When the initial condition is less than that value, only the small-

amplitude LCO occurs, and when the initial condition is greater, the aeroelastic response becomes
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unstable. Thus, the large-amplitude LCO can make the aeroelastic system unstable and this is
dependent on the initial condition. Beyond the flutter velocity, the amplitude of the stable LCO
increases as the flow velocity increases, while the amplitude of the unstable LCO decreases.
At a flow velocity of about 1.8, the amplitudes of the stable and unstable LCO merge. Beyond
that flow velocity, no stable LCO is possible and the system will only experience a diverging
oscillation. This can be explained by Fig. 5. As shown in Fig. 4, the characteristics of an
asymmetric bilinear spring change from a softening spring to a hardening spring as the amplitude
ratio increases. As the arrows indicate in Fig. 5, the flutter speed increases due to the decrease of
stiffness and then the flutter speed decreases due to the increase of stiffness. A stable LCO occurs
in the speed-increased path (straight line) and an unstable LCO occurs in the speed-decreased
path (dashed line).
Fig. 9 shows the parameter map of the two-dimensional model with an asymmetric bilinear

spring when the frequency ratio is 0.765. The parameter map shows the types of aeroelastic
responses for various speed ratios and initial amplitude ratios. When the speed ratio is greater
than 1.0, LCOs are observed. At the same speed, LCOs or divergent aeroelastic responses are
observed dependent on an initial amplitude ratio. Complicated motion such as LCO with two or
more periods and chaotic motion is not observed.
Fig. 10 shows the LCO flutter characteristics of the two-dimensional model with an asymmetric

bilinear plunge spring when the frequency ratio is 1.3. The results of frequency-domain analysis
and time-domain analysis agree well with each other. When the frequency ratio is 1.3, four
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different types of LCO are observed below the linear flutter speed as shown in Fig. 10. Two LCOs
are stable LCOs, ‘A’ and ‘B’ in Fig. 10, and two are unstable LCOs, ‘C’ and ‘D’. These different
LCOs are dependent on the initial condition. Although the authors could not observe unstable
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LCO ‘D’ in the time-domain analysis, one might infer its presence if the initial condition is
sufficiently small. Fig. 11 shows the three types of LCOs when the speed ratio is 0.85. Figs. 11(a)
and (b) show the stable small-amplitude LCO ‘A’ and stable large-amplitude LCO ‘B’,
respectively. Fig. 11(c) shows that the unstable LCO ‘C’ disappears and stable LCO ‘B’ remains.
As the amplitude ratio increases, LCO characteristics follow the path of D–A–C–B, as the arrows
indicate in Fig. 6. Stable LCOs are observed in the two speed-increased paths and unstable LCOs
are observed in the two speed-decreased paths. Thus, the LCOs in Fig. 10 have double LCO
characteristics that consist of A–C LCO, as in Fig. 7, and D–B LCO. Fig. 12 shows the double
LCO. Two different LCOs X and Y are combined into the complicated LCO shown in Fig. 10
such that it represents the characteristics of the two stable LCOs and two unstable LCOs.
Fig. 13 shows the parameter map when the frequency ratio is 1.3. When the speed ratio is

between about 0.8 and 1.0, LCOs are observed. At the same speed ratio, different types of LCOs
are observed dependent on initial conditions. However, aeroelastic responses do not become
unstable due to initial conditions. When the initial amplitude ratio is less than70.1, LCOs are not
observed. When the speed ratio is greater than about 0.9, LCOs are observed, but this region can
be defined as a divergent flutter because the LCO amplitude is so large. Complicated motions are
not observed.
Figs. 14–17 show the time histories and phase plots of the two-dimensional model when the

speed ratio is 0.82. Fig. 14 shows a stable small-amplitude LCO ‘A’ when the initial amplitude
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ratio h�
0 is 1.5. When h�

0 is 3.0, the unstable LCO ‘C’ transiently disappears and stable small-
amplitude LCO remains, as shown in Fig. 15. Fig. 16 shows that the unstable LCO ‘C’ becomes a
stable large-amplitude LCO ‘B’ when h�

0 is 3.2. Fig. 17 shows that only stable large-amplitude
LCO ‘B’ is observed when h�0 is 5.0. Unstable LCO could make the system unstable when the
frequency ratio is 0.765, whereas unstable LCO does not make the system unstable when the
frequency is 1.3. Unstable LCO ‘C’ disappears due to the stable LCO ‘B’ and the system remains
stable.

4. Conclusions

To investigate the non-linear aeroelastic characteristics of a deployable missile control fin, non-
linear aeroelastic analyses of a two-dimensional typical section with an asymmetric bilinear
plunge spring are performed in the frequency domain and the time domain. DPM is used for the
calculation of supersonic aerodynamic forces and MSA is used for the aerodynamic
approximation. An asymmetric bilinear spring is linearized using the dual-input describing
function method. Root-locus method and time-integration method are used for linear and non-
linear aeroelastic analyses.
An asymmetric bilinear spring has the characteristics of both softening and hardening springs

for the variations of LCO amplitude and it considerably affects the linear and non-linear
aeroelastic characteristics. From aeroelastic analyses, LCOs can be observed below or above the
flutter speed. LCO characteristics of the aeroelastic system are significantly dependent on the
frequency ratio. When the frequency ratio is less than 1.0, stable small-amplitude LCO and
unstable large-amplitude LCO are observed above the flutter speed. When the frequency ratio is
greater than 1.0, double LCO, which consists of two stable LCOs and two unstable LCOs, is
observed below the flutter speed and the non-linear flutter boundary is then lower than the linear
flutter boundary. Thus, the frequency ratio plays an important role in the non-linear aeroelastic
characteristics of an aeroelastic system.
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Appendix A. Nomenclature

b reference length, half-chord
B DC amplitude
[C] damping matrix
f non-linear term
FðsÞ Laplace transforms of f

ARTICLE IN PRESS

J.S. Bae, I. Lee / Journal of Sound and Vibration 269 (2004) 669–687 685



h plunge displacement
h�0 initial amplitude ratio
Ia moment of inertia
Kh linear plunge stiffness
KhðhÞ non-linear plunge stiffness
Ka pitch stiffness
½K � stiffness matrix
m mass of wing
½M� mass matrix
q dynamic pressure
s Laplace variable
Sa mass unbalance
½Q� aerodynamic influence coefficient matrix
U air speed
Uref linear flutter speed
x displacement vector
xa augmented state by aerodynamic approximation
X ðsÞ Laplace transforms of x
XaðsÞ Laplace transforms of xa

a pitch angle
d freeplay
r air density
oa pitch frequency
oh plunge frequency

Subscripts

h plunge
a pitch
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